Free Web Hosting Provider - Web Hosting - E-commerce - High Speed Internet - Free Web Page
Search the Web

 

Ana Sayfa        Pi Sayısı Hakkında       Pi Sayısının Tarihi    Pi Sayısı Üzerine Notlar        

Pi Sayısının Özellikleri       Pi Sayısının İlk 1.000.000 Basamağı     Linkler

 

           Pİ SAYISI HAKKINDA         

    Bu sayfada pi sayısı hakkında genel bilgi , pi sayısının ilk 1.000.000 basamağı ve Leonhard Euler ile ilgili bölümler bulabilirsiniz.

 

a) Genel Bilgi

p  sembolü, Yunan alfabesinin 16. harfidir. Bu harf, aynı zamanda, Yunanca çevre (çember) anlamına gelen "perimetier" kelimesinin de ilk harfidir. İsviçreli matematikçi Leonard Euler, 1737 yılında yayınladığı eserinde, daire çevresinin çapına oranı söz konusu olduğunda, bu sembolü kullandı. Eski çağlarda yaklaşık değeri 3 olarak düşünülen pi sayısı bir dairenin çevresinin çapına olan oranını ifade eder. Arşimed pi için yaklaşık bir sayı bulmaya çok istekli idi. Bu değerin 3 1/7 ile 3 10/71 arasında olduğunu gösterdi.

 

İnsanoğlu; daire dediğimiz, kendine özgü düzgün yuvarlak şeklin farkına, tekerleğin icadından çok önceki tarihlerde varmıştır. Bu şekli, diğer insan ve hayvanların gözbebekleri ile gökyüzündeki Güneş ve Ayda görüyordu. Derken, elindeki sopa ile, kum gibi düzgün yüzeylere daire çizdi. Sonra düşündü; bazı daireler küçük, bazıları ise büyük. Görüyordu ki, dairenin bir ucundan öteki ucuna olan uzaklığı (çapı), büyürse, çevresi de o kadar büyüyordu. Sonra gene düşündü, cilalı taş devri insanı, artık soyutlamasını yapmıştı. Dairenin; çevresinin uzunluğu ile çapının uzunluğu orantılıydı. Çevrenin çapa oranı, daireden daireye değişmiyor, sabit kalıyordu. Demek ki; bugünkü gösterim şekliyle, bu sabit orana p dersek; Çevre/Çap = p sabit. Şeklinde yazılabiliyordu. Ünlü matematikçi Leonhard Euler in pi harfini kullanmasıyla popüler hale gelen harf için tam bir geğer bulmak isteyen  bir çok insan ortaya çıktı.

 

                         

Pi Sayısının Genel Olarak Özellikleri :

 

1-     Pi sayısı , m ve n bir tam sayı olarak kabul edildiğinde m/n olarak gösterilemez yani irrasyoneldir. (Bu konuda ayrıntılı bilgi ödev içerisinde vardır.

2- Pi sayısı aynı zamanda cebirsel değildir. Yani bir cebirsel denklemin kökü değildir. İrrasyonel olan bazı sayılarında cebirsel olduğu göz önüne alınırsa p cebirsel olmayan bir irrasyonel sayıdır. Bu tür sayılara Aşkın adı verilir. Euler tarafından pi Aşkın olarak kabul edilmiştir.

 b) Leonhard Euler

LEONHARD EULER (1707-1783)

18. yüzyıl İsviçre'si, matematikçiler ailesinin en meşhur matematikçisidir. Çağdaşları tarafından "Canlı Analiz" adı ile belirtilir. Aynı zamanda; matematik tarihinde, en çok eser ortaya koyan matematikçi olarak görülür. Kaynaklar, matematikle ilgili ortaya koyduğu eser sayısını seksen olarak belirtir.
İsviçre'nin Bale şehrinde, 15 Nisan 1707 tarihinde doğmuştur. Ertesi yıl, babası Paul Euler ve Annesi Merguerite Brucker ile birlikte, babasının kalvinist papazı olduğu Bale şehrinin yakınındaki Richen köyüne yerleşti.
Genç yaşta Bale Üniversitesi'ne girerek teoloji ve İbranice öğrenimi de gördü.
Büyük Petro'nun Rusya'ya getirdiği ressam Gsell'in kızı ile evlendi. Çocuklarını çok severdi. Sekizi küçük yaşlarında ölen on üç çocuğu oldu. 1735 yılında aşırı çalışma sonucu beynine kan hücüm ederek, sağ gözünü kaybetti. Gittikçe artan bir körlük sonucu, geri kalan ömrünü üzüntü içerisinde geçirdi.
1736 yılında, karısının ölümü, O'na büyük üzüntü kaynağı oldu. Ertesi yıl, ilk karısının üvey kardeşi Salomone A. Gsell ile evlendi. Başka bir büyük felaket de, sol gözünü iyi etmek ümidi ile yapılan ameliyatın muvaffakiyetsizlikle neticelenmesi oldu. Başlangıçta ameliyat başarılı geçti. Sonraları, yaranın iltihaplanması sonucu, şiddetli acılar çekti.
7 Eylül 1983 tarihinde, 77 yaşında iken, beyin kanaması sonucu hayata gözlerini kapadı.

İLMİ ŞAHSİYETİ
         İlk matematik bilgilerini, babası Paul Euler'den aldı. İlahiyat öğrenimi görmek üzere, Basel Üniversitesine gönderildi. Burada Jean (I) Bernovilli 'nin derslerine katıldı. O'nun oğulları ile yakın arkadaş oldu. Onlar, Katerina I tarafından Saint-Betesburg'a çağrılınca, Euler de beraber gitti. 1732 yılında, İsviçre'ye dönen Daniel Bernouilli'nin kürsüsünde, O'nun yerini aldı. 1735 yılında, Mekanik Üstüne İnceleme (Traite Comple de Mecanique) adlı kitabı yayımlandı. Bu eserdeki konular, analizin, hareket bilimine uygulandığı ilk eserdir. 1741 yılında, Frederich II tarafından Berlin'e davet edildi ve 1744 yılında, Berlin Akademisi Matematik Bölümü Müdürü oldu.
          Kendilerine oranla, bazı belirsiz fonksiyonların, bütün öteki fonksiyonlardan daha büyük ve daha küçük olduğu eğrileri veya yüzeyleri belirlemeye yarayan, Eş Çevreler Teorisi (Theorie des Isoperimetres) adlı eserini bu sırada bitirdi. Euler, bu eserinde, konu ile ilgili çözümlerin metodunu geliştirdi ve bunu genel bir formülle gösterdi. Aynı yıl, Gezegenlerin ve Kuyrukluyıldızların Hareket Teorisi (Theroie du Mouvement des Planetes et des Cometes) adlı eserini yayımladı. Mıknatıslanma Teorisi (Theroie de L' Aimantation) için, Paris Fen Akademisinin koyduğu ödülü kazandı. Bu yıllarda, Prusya Kralı'nın istediği, balistik problemleri çözdü. Kralın yeğeni, Anhalt-Dessau Prensesi, O'ndan fizik dersleri almak istedi. Yine bu sırada, Sonsuz Küçükler Analizine Giriş (İntroduction in Analysis İnfinitrom) (1748) ve Diferansiyel Hesabın Kuruluşları (İntotuones Calculi Differeniolis) (1755) adlı iki eseri yayımlandı. Bu kitaplar, uzun yıllar, konusu ile ilgili temel eserler sayıldı.
          1776 yılında; Katerine II tarafından, Saint-Petersburg'a çağrıldığı sırada, öbür gözünü de kaybetti. Fakat bu sakatlık, O'nu çalışmalarından alıkoymadı ve İntegral Hesabın Kuruluşları (İnstitutiones Calculi İntegralis) (1768-1770) adlı eserinin çıkmasına engel olmadı.
         Paris Fen Akademisi, Euler'in birçok çalışmalarını mükafatlandırmıştı. Ay teorisini, yeniden geliştirmesi için, 1770 ve 1773 yıllarında bir yarışma açtı. Bu yarışmayı, Euler ve oğlu Johann Alberecht kazandı.
          Euler, matematikte yeni olan; Euler Açıları, Euler Çemberi, Euler Değişmezi, Euler Doğrusu, Euler Formülleri, Euler Fonksiyonu, Euler şekilleri gibi, pek çok yeni kavramlar kazandırdı.